
Droplet theory in low dimensions: Potts models and percolation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 1715

(http://iopscience.iop.org/0305-4470/18/10/025)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 15:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) 1715-1731. Printed in Great Britain 
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Department of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 352, UK 

Received 3 October 1984 

Abstract. A recently developed droplet theory of low-dimensional Ising systems is gen- 
eralised to describe the q-state Potts universality class, and thence the percolation problem 
realised in the q + 1 limit. An integral equation for the Potts model free energy is derived 
and used to obtain the generating function for the cluster size probability distribution in 
the percolation problem, above the percolation threshold. A closed equation for the 
distribution is obtained and shown to yield scaling behaviour. The form of the distribution 
is determined analytically in the regimes of small and large cluster sizes yielding, respec- 
tively, power law decay and Kunz-Souillard exponential decay. The form of the distribution 
in the regime of intermediate cluster sizes is determined numerically in space dimension 
d = 2 .  

1. Introduction 

The configurational physics of low-dimensional Ising systems has been extensively 
studied in two recent papers (Bruce and Wallace 1983, Sim and Bruce 1985, hereafter 
referred to as I and 11, respectively). The essential conclusion of these studies is that, 
in space dimension d = 1 + E ,  the droplet picture of Ising configurations initiated by 
Fisher (1967) and refined by Kadanoff (1976) is realised in an explicit and analytically 
controllable way: the configurations consist of droplets of the two phases whose doubly 
fractal geometry (surface area and connected volume) can be directly linked to the 
character of critical point singularities. 

In this paper we extend this programme of studies to the universality class of q-state 
Potts models (Potts 1952, Domb 1974) and thence to the problem of bond percolation, 
the essential physics of which is captured by the q + 1 limit of the Potts model free 
energy (Fortuin and Kasteleyn 1972). The structure of the paper is as follows. 

In § 2 we indicate the straightforward generalisations of the Ising (two-phase) 
calculations needed to accommodate the q-phase problem, and derive the key result 
of the paper: an integral equation satisfied by the field-dependent free energy. We 
establish the implied critical behaviour of thermodynamic properties and extend the 
analysis to determine the form of the critical singularity exhibited by the mean droplet 
size. 

In 9 3 we turn to the percolation problem. We recall the relationship between the 
q+ 1 limit of the Potts model free energy and the generating function for the cluster 
probability distribution describing bond percolation: the results of $ 2  then immediately 
yield an integral equation for the generating function, valid for d = 1 + E and p > p c .  
We establish that the implied distribution function has the anticipated scaling form 
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and identify the key exponents ( p  and y )  characterising its low order moments. We 
proceed to solve analytically for the limiting behaviour of the cluster probability 
distribution for small and for large clusters, obtaining in the former case the anticipated 
pure power law fall-off and in the latter case a properly scaling version of the general 
exponential form suggested by Kunz and Souillard (1978a, b);  this result is also 
established by an independent and physically transparent argument outlined in the 
appendix. The form of the distribution at intermediate cluster sizes is obtained by 
solving numerically the renormalisation group differential equation it obeys in  d = 2. 
Finally, in Q 4, we review the implications and limitations of our results: specifically, 
we discuss the light which they cast on the percolation phenomenon implicit in the 
droplet theory of the Ising problem, and on the results of Monte Carlo studies of the 
cluster probability distribution in two space dimensions (Nakanishi and Stanley 1980). 

2. Droplet theory of the Potts model 

2.1. The free energy 

In this section we determine a droplet-based representation for the free energy of the 
q-state Potts universality class. The notation and spirit of the arguments will closely 
follow those of the detailed analysis of the Ising case given in 11: accordingly we shall 
emphasise only the generalisations necessary to accommodate q (rather than two) 
phases, referring the reader to I1 for further detail. 

The configurational energy required to embed a droplet of one phase ( a ,  say) in 
a background formed from a different phase ( p ,  say) is written as the sum of two terms 

The first term represents the energy associated with the surface separating the two 
phases; it is proportional to the surface area S of the droplet with a proportionality 
constant Ti '  which, in keeping with the symmetry of the Potts model, we take to be 
independent of the specific phases ( a  and p )  involved. This term thus has precisely 
the same form as in the Ising case, as defined explicitly in 11, equation (2.2). The 
second term represents the energy arising from an ordering field which is chosen to 
favour one particular phase (labelled 1);  it is directly proportional to the volume "I' of 
the droplet, defined explicitly in 11, equation (2.1). To understand the structure of the 
prefactor one must appreciate that equation (2.1) is designed to identify the energy of 
a single droplet configuration relative to that of a droplet-free configuration, so that 
the field term vanishes when neither (Y nor p coincides with the favoured phase index. 
Finally the normalisation of the prefactor is chosen so that the Potts order parameter 
(defined to be unity at low temperatures) is given by the derivative, with respect to 
the field h, of the assembly free energy density to be determined below. 

The functional integral over all single droplet configurations, weighted by the 
Boltzmann factor implied by (2.1), yields the single droplet partition function ZI. A 
one-loop calculation yields the result (a  trivial generalisation of the Ising case, I1 
equation (2.12)) 
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where V, is the volume of the embedding space, u ( R )  = d - ' S d R d  is the volume of a 
hypersphere of radius R and 5 is the correlation length. The function $( R, 5) is defined 
in equation ( 4 . 4 )  of I. For the present purposes it is sufficient to recall its general 
characteristics. Firstly, it has the scaling form 

9 ( R ,  5) = R - 1 6 ( R / o .  ( 2 . 3 ~ )  

Secondly, for droplet scale sizes R small compared to 6, 
4 ( 4  = *o ( 2 . 3 b )  

where CLo is a universal constant (prescribed in a one-loop calculation by I ,  equation 
( 4 . 4 d ) ;  for a two-loop calculation see Schmittmann ( 1 9 8 4 ) ) .  Finally, for droplet sizes 
large compared to 6, 

3 ; ( 2 )  ~ L ( e ) Z ( d 2 - l ) l ?  exp[-(Sd/C")Zd-ll ( 2 . 3 ~ )  

where the argument of the exponential is identifiable as the interfacial free energy of 
a spherical droplet of radius R. The parameter co is a dimensionless factor defined to 
bring into precise coincidence the critical length 5 and the true correlation length 
characterising the exponential decay of the correlation function (see Bruce (1984) for 
elaboration of this point). Within the dilute droplet boundary approximation (dis- 
cussed in the Ising context in I ,  and in a preliminary study of the Potts problem by 
Schmittmann ( 1 9 8 2 ) )  the single droplet partition function ( 2 . 2 )  is sufficient to prescribe 
the partition function for an assembly consisting of droplets of all possible phases ( q  
in number) and all possible length scales (bounded between some arbitrary inner 
length scale Lo, simulating a lattice cutoff, and the system size L ) .  
find that the result may be expressed as an integro-differential 
dimensionless free energy density: 

Following I1 we 
equation for the 

where 

a a h ,  R, 5) = ,,f(h, R, 5) 

and we have taken the thermodynamic ( L +  CO) limit. 
Equation ( 2 . 4 ~ )  is the key result of this section and forms the essential basis for 

the rest of the paper. It is a direct generalisation of the expression for the Ising free 
energy, given in 11, equation (3.9), and is expected to have a similar domain of validity 
(see 11, 0 6 and § 3.1 below). Its essential structure is easily appreciated: the first 
contribution to the integrand can be traced to the dressing of the field-favoured phase, 
1, by droplets of the q - 1 unfavoured phases; the second term originates in the dressing 
of the unfavoured phases by droplets of phase 1 ; the final term reflects the dressing 
of each of the ( q  - 1) unfavoured phases by droplets of any of the other ( q  - 2 )  
unfavoured phases. 

( 2 . 4 6 )  
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2.2. The order parameter, susceptibility and mean droplet size 

Expressions for the various thermodynamic observables follow immediately from 
equation (2.4). Specifically, the order parameter (the zero field magnetisation) 
Q( h = 0, Lo, 5) satisfies 

~ ( 0 ,  Lo. 5) = 1 - JI d~ +(R, 5) ~ ( 0 ,  R, 5) ( 2 . 5 ~ )  

which has the solution 

(2.56) 

with the asymptotic critical behaviour (cf equations (2.3a, b))  

Q(0,  Lo, 5) - (51Lo)-p~y ( 2 . 6 ~ )  

with 

PI v = 4*0. (2.6b) 

The susceptibility may be obtained in a similar fashion with the asymptotic result 

~ ( 0 ,  Lo, O - ( t / ~ o ) ’ / ”  ( 2 . 7 ~ )  

with 

y /  U = d - 2q+o. (2.7b) 

Equations (2.6b) and (2.76) manifest the strong scaling built into our droplet theory. 
One further result will subsequently prove interesting: we identify the exponent 8 

which characerises the rate of divergence of the mean droplet size, prescribed by the 
second moment of the droplet size distribution (cf I, equation (6.7)) 

where V ( R ,  Lo, 5 )  is the connected (dressed) volume of a droplet of scale size R and 
n (  R, 5) dR represents the mean number of droplets of scale sizes R + R + dR in zero 
field. These functions are readily determined by straightforward extensions of the 
arguments leading to the free energy, equation (2.4) (cf 11, 9 5 and Schmittmann 
(1982)). The asymptotic behaviour of S is then found to be 

s - ( 5 /  ( 2 . 9 ~ )  

with 

( 4 - 1 ) P  e / u  = d - 2 ( q -  l)i,b0= d -2--. 
4 v  

(2.9b) 

This result is independent of which class (phase) of droplets the function n(R,  5) is 
chosen to characterise. In the king limit ( q  = 2), we recover the result 8 = du - /3 = y + P 
obtained in I. 

One final remark is appropriate at this juncture. All the results of this section are 
parametrised in terms of the length 6. The critical behaviour of this length scale is 
prescribed in the course of the calculation leading to the form ( 2 . 2 )  for the single 
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droplet partition function (cf I, equations (3.28)) 

6 - ( T, - T)-” l l v =  E + ; E 2 + ~ ( E 3 ) .  (2.10) 

These results are thus necessarily independent of q, a point to which we shall return 
in § 4. 

3. Droplet theory of percolation 

3.1. The cluster probability generating function 

We now turn to the problem of percolation. Consider a d-dimensional cubic lattice 
in which nearest-neighbour bonds are present with a probability p. Denote by p ( s )  
the probability that a site belongs to an s-site cluster (a  cluster consisting of s sites 
linked by bonds). We associate with the probability distribution p (  s )  a generating 
function g ( h )  defined such that 

or 

(3.2) 

Wih the understanding that the probability distribution p (  s) incorporates only finite 
clusters we see immediately from equation (3.1) that the probability P that a site 
belongs to the infinite cluster has the representation 

P = l -  p ( s ) = g ( h = O ) .  
S P I  

(3.3) 

This probability defines the order parameter for the percolation problem (see Stauff er 
(1979) and Essam (1980) for recent reviews), an identification which suggests a clear 
analogy between the role of the generating function in the percolation problem and 
the role of the free energy in a thermally driven phase transition. This analogy finds 
a precise expression in the mapping devised by Fortuin and Kasteleyn (1972) who 
showed that the generating function is related to the free energy density of a Potts 
model (on an identical lattice) via 

d 
q-I  dh 

g(h)=l im(q-l)-’- - f ( (q- l )h)  (3.3a) 

with the auxiliary condition that the bond occupation probability p in the percolation 
problem and the dimensionless bond-breaking energy K in the Potts problem are 
related by 

(3.3b) 

The different status of equations ( 3 . 3 ~ )  and (3.36) merits comment before we proceed 
further. Equation (3.36) expresses a link between two specific lattice models; as such 
it has no immediate implications for universal quantities (the critical constants K ,  and 
pc are certainly lattice-dependent) and is of no use to us here. Equation (3.3a), on 
the other hand, although deriued within the framework of a lattice model, clearly 
transcends this limitation: it expresses a link between two universality classes, and 

p = 1 - e-K 
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leads to the expectation that the universal behaviour of the generating function g( h )  
(notably the exponents characterising the singular behaviour of its derivatives and 
appropriate combinations of associated amplitudes) will be correctly captured by 
equation ( 3 . 3 a ) ,  no matter what particular realisation of the Potts model is utilised in 
the calculation of the free energy density J: 

Proceeding on this assumption we substitute into equation ( 3 . 3 ~ )  our droplet-based 
representation ( 2 . 4 )  for the Potts free energy density. Taking the prescribed q + 1 limit 
we find 

g ( h ,  LO, 5) = 1 + 5 d~ $ ( R ,  
oc 

- g(h ,  R, 5)) eh'(') 
LO 

- e-hv(R)-  u - ' ( R ) g ' ( h ,  R, l)]  ( 3 . 4 a )  

( 3 . 4 b )  

These equations define an implicit representation of the generating function for the 
percolation probability distribution p ( s ,  Lo, 5). A number of remarks are in order. 
Firstly, the dependence upon the minimum length scale Lo indicated in equation ( 3 . 4 ~ )  
is a reminder that our representation can be trusted to capture correctly only the truly 
universal features of the number distribution, whose signature will be their indepen- 
dence of this arbitrary inner length. Secondly, our inclusion of the length 5 amongst 
the arguments of the generating function anticipates the fact that the results we shall 
obtain will be parametrised by this length, whose behaviour near the percolation 
threshold p c  follows from (2 .10)  and ( 3 . 3 6 )  as 

5 - ( P - P J  ( 3 . 5 )  

with Y as prescribed in equation (2 .10)  (cf, however, the caveat registered in 0 4 ) .  
Thirdly, we observe that, as noted in 11, the representation ( 2 . 4 )  is trustworthy below 
the critical point for fields small on the scale of 5-d (5/ Lo)p'". The former limitation 
implies that ( 3 . 4 )  is trustworthy only above the percolation threshold; the latter 
limitation does not invalidate the use of g ( h )  as a generating function since, in this 
capacity, g ( h )  is required only for infinitesimal real h. 

Finally it may forestall some confusion to recall that, within our framework, the 
field h has dimensions of an inverse volume, since it was chosen (equation ( 2 . 1 ) )  to 
be thermodynamically conjugate to the droplet volume rather than to the number of 
sites within the droplet. As a corollary the function g defined in equation ( 3 . 4 )  will 
act as a generator for 's-sized' clusters where s itself has the dimensions of volume. 

3.2. The moments of the cluster probability distribution 

The moments of the cluster number distribution are prescribed by the derivatives of 
the generating function g with respect to the 'field' h. Specifically 

(s") = jo* dss"p(s ,  Lo, 5) = ( - 1 ) " + ' [ P f l ( L 0 ,  5) -8,ol  ( 3 . 6 ~ )  

where we define 

( 3 . 6 b )  
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An equation for the functions P,, is easily derived from the integral equation (3.4), as 
discussed for the corresponding Ising problem in 11, 0 4.1. Neglecting terms which 
modify amplitudes by multiplicative factors of the order of 1 + $o we find (for n > 0) 

X 

p n ( L o , ~ ) = e x p ( - ( n + l )  1 Lo ~ R I / I ( R , ~ ) )  

with 

(3.7a) 

(3.7b) 

which, with the aid of equations (3.3) and (3.6), we identify with the percolation order 
parameter P. The implied behaviour near the percolation threshold follows immediately 

(3.8a) 

with 

P /  U = *o. (3.8b) 

The behaviour of the mean cluster size follows as the second moment of the number 
distribution which one may obtain readily from equation (3.7): 

(3.9a) 

where 

y /  U = d - 21/10 = d - 2( /3/ U). (3.9b) 

Both (3.8b) and (3.9b) have interesting implications for the Ising problem, as we shall 
return to discuss in Q 4. The behaviour of the general nth-order moment follows in a 
similar way: 

(3.10) 

The fact that the exponent of the nth order terms varies linearly with n guarantees 
scaling for the generating function. Specifically, combining equations (3.6) and (3.10) 
we find 

m 

g ( h ,  Lo, 5) = Pn(Lo,  t ) h “ / n !  = ~ - d ’ P * ’ / ” ~ ( h ~ P 6 ’ ”  ) (3.11a) 
n=O 

with 

3.3. n e  structure of the cluster probability distribution 

To investigate the form of the cluster probability distribution we substitute into the 



1722 B Schmittmann and A D Bruce 

defining relation 

dh eihs(l-g(ih,  L o , ( ) )  (3.12) 

the integral representation for the generating function, equation (3.4). Performing the 
integral on h we find 

P ( S 9  U 0 9 0  = P O ( S ,  o f v s  - uo) 

+ sd-’ lm du v - ~ ~ ( u ,  5 ) [ p ( s  + U, U, 5) - p ( s ,  0, &)I. ( 3 . 1 3 ~ ~ )  

We have changed the variable of integration from R to u ( R )  and, correspondingly, 
have chosen to reparametrise the short-distance cutoff implicit in the probability 
distribution by a minimum volume scale uo = U( Lo) rather than the minimum length 
scale Lo itself. We have also introduced the abbreviations 

U0 

(3.13b) 

Equation ( 3 . 1 3 ~ )  is the central result of this paper. It can be solved analytically in 
the regions of sufficiently small, and sufficiently large, s values, as we now proceed to 
show. 

We begin by recasting the equation in the differential form 

(3.14) 

Now we observe that in the ‘scaling’ regime characterised by s values large compared 
to the ultraviolet cutoff U the difference on the RHS of equation (3.14) may be replaced 
by a derivative with respect to the cluster size, yielding the partial differential equation 

s >> U. (3.15) 

The solutions to this equation are of the form 

where Po( U, () obeys the differential equation 

(3.17) 

which is immediately recognisable as the equation satisfied by the order parameter 
(equation 3.7 b ) ,  with the ultraviolet cutoff reparametrised as indicated above. 

Thus far in the argument we have invoked no approximation other than that imposed 
by the requirement s >> U needed to justify the replacement of (3.14) by (3.15). Now 
let us focus specifically on the region of large s. By ‘large’ we mean, in the first instance, 
s values for which s >> U( () - td, although this condition will subsequently need to be 
refined. Given this additional constraint one sees, firstly, that equation (3.16) may be 
invoked even for U values as large as au((), with a some suitable small constant. 
Thus, explicitly, 
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Moreover, we see from equations ( 3 . 1 3 ~ )  and  (3.7b) that, to within exponentially small 
corrections, 

P(S, 4 0 , o  =Po(% 5) (3.1 8 b) 

P O ( 4 0 , O  = 1. ( 3 . 1 8 ~ )  

Matching equations (3.18~1, b, c )  we conclude that 

PdS) = Po(% 5) (3.19) 

whence, substituting back into equation (3.16), and  setting U = uo, 

P(S, U01 5) = po(s/Po(uo, 5),0 s >> U(,$). (3.20) 

In the appendix we show that this result may be derived by rather simple independent 
arguments which reveal its physical significance. Here we make its form more explicit 
by recalling the large argument behaviour of the function 4 (equation ( 2 . 3 ~ ) ;  cf also 
equation (3.13b)), obtaining finally 

p (  s, U ~ ,  5) = $'"'( du([))-' <I"' exp( -- ' d  ; ( d - l ) / d  

CO 

where 

8 ' =  (1 +4d - d2) /2d  

and 5 is a scaled cluster size variable 

s'= S [ P O ( U O ,  5)u(5)1-' .  

( 3 . 2 1 ~ )  

(3.21 b) 

( 3 . 2 1 ~ )  

Now let us consider the regime of 'small' s values, i.e. in the first instance, s << U( 5). 
In this case the differential equation (3.15) and the functional form (3.16) which it 
implies for the cluster probability distribution are not trustworthy in the region U - U([), 
since the 'differential' approximation made in replacing (3.14) by (3.15) clearly breaks 
down at  U = s (<< U([)): accordingly we must search for some other regime of U values, 
which does lie within the domain of validity of the differential equation (3.15), and  
for which we may prescribe the form of the probability function. This aim is realised 
with the choice U = as, with a some suitably small constant. Clearly such a choice 
guarantees the validity of the differential approximation, and thus of the form (3.16), 
for this U value: 

( 3 . 2 2 ~ )  

Moreover, and  less trivially, we assert that for such a choice the probability distribution 
has the form 

P ( S ,  as, 5) = p*(s/Po(as, 5)) .  

P(S, as, 5) = A ( a ) / s  (3.22b) 

where A ( a )  is some a-dependent amplitude which we need not prescribe. To justify 
this assertion we consider an  alternative approach to the solution of equation ( 3 . 1 3 ~ ) :  
one may, in fact, proceed to develop a hierarchy of approximate solutions to this 
equation by iteration in powers of the concentration function 4, taking as the first-order 
solution the function 

P A S ,  u0, o = P o ( s , o e ( s - u o )  

= (ds)- ' ILoe(s - uo) s (< U( 6). (3.23) 
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In the small s region one discovers that the iteration procedure generates a perturbation 
expansion in powers of $o h (s /  uo) .  This expansion is actually recognisable as the 
expansion of a power law in s; however, for the present purposes it is sufficient to 
note that, replacing the ultraviolet cutoff uo by as quells the logarithmically divergent 
corrections to the leading (analytic) behaviour displayed by the first-order solution 
(3.23), so that these corrections merely renormalise the amplitude of the s-l behaviour. 
Equation (3.22b) is thus vindicated. Equations ( 3 . 2 2 ~ )  and (3.226) may now be 
combined to yield 

Now, with the present parametrisation, the order parameter has the behaviour (cf 
equation (3.8)) 

where B is a constant. Utilising this result in conjunction with equation ( 3 . 2 4 ~ )  we find 

Combining this result with equation (3.16) we obtain 
p ( s ,  uo, 5 ) ” A ( a ) ( c y / ~ ~ ) - j , n / ( ~ - * )  O S  - d / ( d - J o ) ,  (3.25) 

The self-consistency of the argument requires that the result be independent of the 
specific choice of the matching parameter cy so that, finally, 

p ( s ,  uo, 5) = A s - ’ ( s / ~ ~ ) ” ~ ” ( ~ - * o )  s<< 4 5 )  ( 3 . 2 6 ~ )  

where A = A( 1) is an amplitude which is independent of the ultraviolet cutoff uo, but 
which this argument does not otherwise prescribe. In fact the perturbative (iterative) 
approach to equation (3.13a), discussed above, shows that 

A =  $o/ (d  -$o) +O(IcI:). (3.26b) 

Inspection of the two limiting cases (3.20) and (3.26) reveals that they are both 

( 3 . 2 7 ~ )  

consistent with the general scaling form 

P ( S ,  U 0 3  5) = ( S / B o ) ’ - T p ’ ( s / ( B O S g ) )  

where 

T = 2 i- $o/( d - $ 0 )  = 2 + I /  8 (3.27 b) 

and 

s5 = ~ ( 5 ) 5 - * 0  = S d d - ’ t d - P / ’  ( 3 . 2 7 ~ )  

while Bo is a non-universal parameter defining the critical behaviour of the order 
parameter: 

(3.27 d )  

Written in this way the scaling function p’ is universal, given a specific convention for 
the definition of the correlation length. 

Two remarks are now in order. Firstly we observe that one may establish the scaling 
form (3.27) more generally, and at the same time refine it somewhat, by substituting 
the scaling form of the function g (equation (3.11)) into the defining relation for the 
probability distribution, equation (3.12). The scaling form (3.27) is then found to hold 

Po( uo, 5) = Bo(-P’”.  
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in the critical region , fd  >> uo (i.e. 6 >> Lo), where the moments scale according to equation 
(3.10), modulo an  additional non-scaling and  analytic contribution which contributes 
significantly only to the zeroth moment of the probability distribution function. 

Secondly, equation (3.27) makes it plain that the dividing line between the 'small 
s' and  'large s' regions examined explicitly above, is actually set by the 'typical cluster 
size' (equation ( 3 . 2 7 ~ ) )  rather than by U([). This state of affairs is reflected in the form 
of the perturbation expansion leading to equation (3.26b), through the appearance of 
terms which, though smaller than the leading contributions by powers of s/ U( 0, carry 
additional factors of In( s/ U"). 

To complement the small s and large s solutions to equation ( 3 . 1 3 ~ )  determined 
analytically above we have obtained solutions for intermediate values of s by numerical 
integration of equation (3.14), from the regime U > >  U([) where the first-order perturba- 
tive solution pl(s, U, 6) is satisfactory down into the scaling regime U = vo<< U(&). In 
performing the calculations we have set d = 2 and have parametrised the function (L' 
such that the amplitude I)'"' is given by 11, equation (4.14). We have chosen the 
parameters + o =  p / v  and Y to reproduce the d = 2  values of the percolation indices 
as given by series studies (reviewed by Stauffer (1979)); we have set co = 2, in accordance 
with a conjecture developed elsewhere (Bruce 1984) which presupposes the convention 
that 6 is that length which characterises the exponential falloff of the pair-connectedness 
function; finally we have (cf 11, equation (4.14)) set the parameter T,= E (at one 
loop) = 1. We defer further comment on these assignments to the following section. 

The results of these calculations are presented in figure 1 which shows the logarithm 
of the scaling function b, defined by equations (3.27), plotted as a functior. of the 
square root of the scaling variable (cf equations ( 3 . 2 7 ~ )  and ( 3 . 2 1 ~ ) )  

8=  s [P"(UO, 5)..5*]-'. (3.28) 

Clearly the function evolves in a relatively structureless fashion between the limiting 
small 8 value, effectively prescribed by the perturbative result (3.26b), and  the large 8 
behaviour 

(3.29) -In b( 8) = T?'~ - 0.804 In s'+ constant 

/ 201 / 

I ,/" 

5 (4 151 //" 
+ i  

/" 

0 2 4 6 
?'z 

Figure 1. The negative of the logarithm of the d = 2 scaling function i for the cluster 
probability (equation 3 . 2 7 ~ 1 )  plotted against the square root of the scaling variable S 
(equation 3.28). 
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following from equation (3.21). We remark, however, that the curvature of the function 
changes sign at S= 2. For higher S values the curvature is positive in accordance with 
the asymptotic form (3.29). For lower S values the curvature is negative. Indeed we 
believe that, as a function of f, p’ approaches its S=O value non-analytically (with 
infinite slope). Although we have not investigated this feature in detail it seems likely 
that it should be attributed to the fact that, for fixed droplet scale size R << 6 the droplet 
population function I$( R / ( )  approaches Go non-analytically as a function of (increas- 
ing) 6, though analytically as a function of (decreasing) t - 6-”” (cf I, equation ( 4 . 4 ~ ) ) .  

4. Discussion 

We begin our discussion by examining the lessons to be learned from the predictions 
assembled in this paper for the forms of various critical indices. 

The simplest and yet the most manifestly unsatisfactory prediction is that for the 
correlation length index U, equation (2.9). The q independence of this prediction is at 
variance with established results: the q = 1 ,  percolation, value in d = 2 is v 1.35 
(Stauffer 1979) while for q = 2 we have the exact Onsager result v = 1 .  This deficiency 
is an  immediate corollary of the fact that this index is derived from the behaviour of 
an  artificially isolated interface: the theory takes no account of the effects of other 
droplets upon interfacial fluctuations, effects which may include the decoration of an  
interface separating two phases by droplets of a third phase (Selke and  Pesch 1982). 
We expect that such effects will give rise to corrections to the index v that are of the 
order of ( q  - 2)14;’~; thus the interface-based calculations, which have been extended 
to 4-loop order (Forster and  Gabriunas 1981) may well be most satisfactory in the 
Ising ( 9  + 2) limit. At this point we should register a caveat concerning equations 
(2.10) and (3 .5) .  These results suggests that, in the d + 1 limit, the percolation index 
v diverges as l / ( d  - 1 )  whereas, in fact, in d = 1 the value of v (for the percolation 
of nearest-neighbour connected clusters) is v = 1 (Klein et a1 1978). This apparent 
discrepancy is resolved by the recognition that equation (3 .5)  presupposes that the 
deviation p - pc  in the percolation problem has a Taylor series expansion in the deviation 
K - K ,  for the corresponding Potts model. Equation (3.3b) shows that this assumption 
is valid for d # 1. For d = 1 ,  however, where K = 0, we have p c  = 1 and p - p c  - e-K - 
( - I ,  implying v = 1 in accord with the known result. 

Let us turn now to the predictions (2.66) and (3.8b) for the order parameter 
exponent P. These results illuminate an interesting feature of the Ising droplet model, 
remarked on in I (P 8). In the Ising problem one finds that as the critical point is 
approached from below the volume of that portion of the originally homogeneously 
ordered phase left after decoration by the droplet hierarchy vanishes as [ - ‘ p / “ ’ ;  where 

( 4 . 1 ~ )  

(When necessary we will use subscripts 1 and  P to distinguish between Ising and 
percolation exponents.) The recognition (cf equations (2.6b) and (3.8b)) that 

( P l  = 2(P/ V)P (4 . lb )  

( P /  .)I = % P /  V I , .  

thus reveals that 

( P l  v ) l =  ( P /  VIP .  ( 4 . 1 ~ )  

The implication is clear: implicit in the droplet representation of the Ising problem is 
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a pure (‘random’) percolation problem in which the role of the infinite cluster is played 
by the residual undecorated volume of the ground-state phase. 

This implication is also reflected in our result for the Ising droplet size exponent 
(equation (2.96)) 

( e /  V ) I  = d - ( P /  V ) I  (4.2a) 

which, when combined with the standard scaling result for the cluster size exponent 
in the percolation problem (equation (3.9b)) 

yields, in conjunction with equation (4.1 b ) ,  

Thus the mean droplet size (more precisely, the second moment of the droplet size 
distribution) in the Ising problem diverges with the same power of the thermal 
correlation length as does the mean cluster size in the percolation problem as a function 
of the connectedness length. 

Regrettably, the link between Ising and percolation behaviour is not as simple as 
these results would suggest. Certainly, the king critical point is a percolation point, 
in d = 2 (Coniglio et a1 1977), and the predictions ( 4 . 1 ~ )  and ( 4 . 2 ~ )  are not inconsistent 
with the existing numerically established results (cf Sykes and Gaunt (1976), Jan et a1 
(1982) and further discussion in I ) .  However the equations proffering explicit links 
between percolation and Ising indices (equations (4.1 6 )  and ( 4 . 2 ~ ) )  are irreconcilable 
with series-based results for percolation exponents (Stauffer 1979). It is possible to 
envisage a refined theory in which droplet decoration of interfaces gives a q-dependent 
renormalisation of both v and $0, while leaving the structure of the theory of the 
many-droplet assembly essentially unaltered: the identifications (4.1 a )  and (4.2~1) 
would then survive, while the erroneously simple relationships between exponents 
associated with systems of different q ((4.16) and ( 4 . 2 ~ ) )  would be modified. It is also 
possible, however, that the noted inconsistencies are an indication that the neglect of 
partial droplet overlap (the O(+n) approximation) inherent in our theory of the 
many-droplet assembly represents an unexpectedly severe limitation already in d = 2. 

In any event let us now turn to consider the key results of this paper, namely those 
concerning the cluster size probability distribution. We have seen, first of all, that our 
theory confirms the anticipated scaling form of the cluster distribution: specifically 
equations (3.27a)-(3.27d) are in complete accord with the results of purely 
phenomenological arguments summarised, for example, by Stauff er ( 1979). One 
appreciates that this vindication of phenomenological scaling arguments is non-trivial 
when one recalls that the corresponding phenomenological arguments applied to 
droplets in the Ising problem (Binder 1976) were shown in I to be inconsistent with 
the form derived from our explicit droplet theory (cf I ,  § 6). 

Secondly, and more significantly, our theory generates a closed equation ( 3 . 1 3 ~ )  
for the cluster probability function. For clusters small compared to the typical cluster 
size sf (equation ( 3 . 2 7 ~ ) )  the distribution exhibits pure power law decay (equation 
(3.26)). For clusters large compared to sg the distribution exhibits an exponential 
fall-off (equation (3.21)) which bears out a prediction first made by Kunz and Souillard 
(1978a, b), refining it in a number of important instances. Specifically, the s ( d - l ) ’ d  
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dependence of the argument of the exponential is seen to hold, in the present theory, 
arbitrarily close to the percolation threshold, a region in which the Kunz-Souillard 
theorem was not formally proven. This result bears out a conjecture by Klein and 
Stauffer (1980) and goes some way to allaying the doubts on this issue expressed by 
Nakanishi and Stanley (1980) on the basis of Monte Carlo studies to which we shall 
shortly return. As a corollary we see that the Kunz-Souillard form appears with 
parameters whose 6 dependence ensures consistency with scaling (cf also a renormalisa- 
tion group argument valid near d = 6 ,  cited by Harris and Lubensky (1981)). Indeed 
the form of the argument of the exponential is readily intelligible in terms of the 
underlying thermal problem if we note that 

The first factor is identifiable as a measure of the surface tension; the factor s6”” is 
a measure of the volume of space confined within the boundaries of a droplet of 
connected volume s and fractal dimension (Mandelbrot 1982, Kapitulnik et a1 1983) 

The factor ( s ( ~ / ” ) ( ~ - ’ ) ’ ~  thus measures the external surface area of such a droplet, 
and the argument of the exponential is simply the classical free energy of an essentially 
spherical droplet containing the prescribed connected volume. This view of the signifi- 
cance of equations (3.20) and (3.21) is developed more explicitly in the appendix. 

Our calculation also captures the power law prefactor structure associated with the 
asymptotic (large s) form. This result (specifically, the prediction for the exponent e‘, 
equation (3.21)) is in accord with a calculation by Lubensky and McKane (1981). 
Their study, like our own, exploits the Potts representation of the percolation problem, 
and traces the asymptotic form of the distribution to the effects of large droplets. Their 
calculation, however, does not incorporate the critical (droplet-nesting) effects which 
produce a properly scaling form, and thus yields, in effect, simply the first-order 
solution ( 3 . 2 3 ~ )  to our fundamental equation ( 3 . 1 3 ~ ) .  On the other hand, the price 
(the dependence upon dimensional regularisation in the calculation of $ ( R ,  5): cf I) 
we have paid to control critical point effects shows up in the failure of our theory to 
detect the anomaly in the exponent 0’ (i.e. the failure of equation (3.216)) in d = 3, 
observed by Lubensky and McKane whose calculation is performed without recourse 
to a small d - 1 expansion. Indeed it is both gratifying and remarkable that the 
dimensionally regularised calculation proves correct (in this respect) for d < 3. 

Finally, let us return to discuss the Monte Carlo studies of the cluster probability 
distribution (Nakanishi and Stanley 1980) alluded to above. Perhaps the most distinc- 
tive (and potentially troublesome) feature displayed by these calculations is their 
apparent inconsistency with the Kunz-Souillard form. Specifically, close to the percola- 
tion threshold a plot of (minus) the logarithm of the cluster probability against the 
square root of the cluster number shows significant deviations from the linear behaviour 
expected for ‘large’ cluster numbers, in d = 2 (and confirmed by the present calcula- 
tions). A number of comments are in order here. Firstly, the existence of the prefactor 
structure in equation (3.21~1) shows that such a plot will, if extrapolated back to s’= 0, 
have a finite intercept with the s’= 0 axis, and will have a positive curvature (decreasing 
as l / d s ) .  The former feature is indicated in the d = 2 Monte Carlo data (Nakanishi 
and Stanley 1980, figure 13a), but the curvature apparent in the data would appear 
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to be negative. However, given the observed limiting slope of the data and utilising 
equation (3.29) one may estimate the 6 values appropriate for the p values studied 
(the amplitude connecting 6 and p c - p  has not, to our knowledge, been determined) 
and thence estimate the range of values of the scaling variable s’ (equation 3.28) actually 
studied in the Monte Carlo experiment: one then finds that the troublesome data are 
actually associated with s’ values smaller than that (S= 2) at which the curvature in 
-In i(s’) (as given by the present theory) changes sign. It thus seems quite likely that 
the Monte Carlo results are, in fact, consistent with the Kunz-Souillard form. Naturally 
it would be desirable to make a more complete comparison between the Monte Carlo 
results, and those presented here. However, in view of the relatively structureless 
character of figure 1, a meaningful comparison of this type must await the determination 
of the amplitude connecting 6 and p c - p :  one could then determine the connection 
between the observed cluster number s and the scaling variable s’ (equation (3.28)) 
and carry through a comparison with no adjustable scale parameters. 

With this possibility in mind we conclude by offering our assessment of the 
trustworthiness of the results summarised in figure 1. The behaviour of the computed 
scaling function for small cluster sizes rests heavily on the dilute-droplet approximation 
at the heart of our theory; although this dependence is tempered through our parametri- 
sation of t,bo by the ‘correct’ (series) value of the ratio ( p l y ) ,  the reliability of our 
predictions in this region remains open to question. By contrast, the validity of the 
predicted form of the scaling function for large clusters very probably transcends that 
of the dilute-droplet approximation. Specifically, the structure of the argument of the 
exponential in p’(s’), represented in the first term in equation (3.29), is supported by 
rather general configurational arguments (cf the appendix and, as regards the value 
of col the study by Bruce (1984)). The &dependent prefactor structure in p’(s’), 
represented in the logarithmic term in equation (3.29), is also likely to be trustworthy 
in d = 2 where, we believe, our calculation correctly handles the droplet zero modes 
which control this factor. Finally we observe that the ;-independent prefactor in p’( ;), 
represented in the ‘constant’ in equation (3.29), is controlled essentially by the para- 
meter $(=’ (equation ( 2 . 3 ~ ) ) .  This parameter is, we surmise, possibly universal in a 
strong sense (independent of q )  and, as such, might actually be obtained from the 
results of the field-expansion studies of coexistence curve behaviour in the d = 2 Ising 
model, discussed in 11, 0 4.1. However, in parametrising the function 4 with the true 
percolation indices (cf 9 3.3) this strong universality of I ) ( ~ )  has been compromised: 
the implied value of is a factor of two smaller than that suggested by the Ising 
data examined in 11. 

Appendix. The  large s behaviour of the cluster probability distribution 

In this appendix we present an alternative derivation of the large s behaviour of the 
cluster probability function which clarifies its physical origins. Consider a q-state Potts 
model on a hypercubic lattice of V sites and unit spacing; we take the system to be 
below its ordering temperature, with an infinitesimal field favouring phase 1. Denote 
by M the number of spins which do not occupy the state 1: 

where ui labels the state of the spin at site i. The probability density p , ( M )  for the 
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number M may be written as 

="la 2T dh e 'h"(exp( ih~(S , , , l - l ) ) )  i 0 

where the subscript denotes averaging in the ensemble of zero (infinitesimal) field. 
Now the Potts model free energy density may be written in the form 

where the argument of the exponential represents the configurational energy associated 
with the external field. Combining equations (A2) and (A3) with equations (3.2) and 
( 3 . 3 ~ )  one readily finds that 

This result is quite general. It impliesjn particular, that the large s behaviour of the 
cluster probability function p ( s )  is controlled by the probability of Potts model 
configurations containing that same large number, s, of spins occupying states other 
than that which is thermodynamically favoured. It is clear on physical grounds that 
such configurations will originate in large effectively spherical droplets of one of the 
q - 1 unfavoured phases. Consider, then, a droplet of phase 2, say, which extends 
over MO sites. Clearly, such a droplet will typically not be fully ordered: for a droplet 
which is large enough (on the scale of the correlation length) we may expect that only 
a fraction ( q  - 1)Qq-' + q-' of the MO spins will actually be in state 2, where we 
anticipate that the order parameter for the droplet will coincide with the bulk order 
parameter: 

Q=q(q-lj- ' (6, ,- ;)  droplet = q ( q  - 0-'( %' -;) bulk . (A5) 

The fraction of the spins within the droplet which will be in state 1 is ( q  - l ) - ' [ l -  
( q  - 1)Qq-' - q-'1. Thus the actual number M of spins within the droplet that will 
not be in phase 1 is 

M = MO[ 1 - q- ' (  1 - Q ) ] .  (A61 

It follows that the probability p , ( M )  d M  of finding the number of spins in states other 
than 1 to lie between M and M + d M  is equal to the probability of finding a droplet 
of radius between R and R + dR where 

MO = Sdd-' Rd (A7) 

while MO and M are related by equation (A6). Since such large droplets are clearly 
dilute the required probability may be obtained immediately from equation (2.2): 

p q ( M ) d M = ( q - l ) V v - ' ( R ) ~ ( R , ~ ) d R .  (A8) 

Substituting this result into equation (A4) and utilising equations (A6), (A7) and ( 2 . 3 ~ )  
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we find 

where we have identified the percolation order parameter P with the q + 1 limit of the 
Potts order parameter Q. Equation (A9) recovers precisely the asymptotic form derived 
in the text (cf equations (3.20) and (3.13b)). 
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